我们考虑了主动域适应(ADA)对未标记的目标数据的问题,其中哪个子集被主动选择并给定预算限制标记。受到对域适应性源和目标之间的标签分布不匹配的关键问题的最新分析的启发,我们设计了一种方法,该方法在ADA中首次解决该问题。它的核心是一种新颖的抽样策略,该策略寻求目标数据,以最能近似整个目标分布以及代表性,多样化和不确定。然后,采样目标数据不仅用于监督学习,还用于匹配源和目标域的标签分布,从而导致了显着的性能改善。在四个公共基准测试中,我们的方法在每个适应方案中都大大优于现有方法。
translated by 谷歌翻译
尽管机器学习在视觉对象跟踪的任务上进行了广泛采用,但最近基于学习的方法在很大程度上忽略了一个事实,即视觉跟踪是其本质上的序列级任务。他们在很大程度上依赖框架级训练,这不可避免地会导致数据分布和任务目标的培训和测试之间的不一致。这项工作介绍了基于强化学习的视觉跟踪序列训练策略,并讨论了数据采样,学习目标和数据增强的序列级设计如何提高跟踪算法的准确性和稳健性。我们对包括LASOT,TrackingNet和GoT-10K在内的标准基准测试的实验表明,四个代表性跟踪模型,SiamRPN ++,Siamattn,Transt和TRDIMP,通过在不修改建筑架构的情况下将提出的方法纳入训练中,从而不断改进。
translated by 谷歌翻译
众包系统使我们能够从人群工人收集嘈杂的标签。代表工人和任务之间的本地依赖性的图形模型提供了一种原理的推理方式,从嘈杂的答案中获得真正的标签。然而,人们需要一个预测模型,直接从众包数据集上工作,而不是在许多情况下都是真正的标签。为了推断真标并同时学习预测模型,我们提出了一种新的数据生成过程,其中神经网络从任务特征生成真正的标签。我们设计了EM框架交替的变分推理和深度学习,以便分别推断出真正的标签并更新神经网络。与合成和实时数据集的实验结果显示了基于信仰传播的EM算法对i)任务特征损坏,ii)以前的多模态或不匹配的工作人员,并且iii)少数垃圾邮件发送者向许多任务提交噪声。
translated by 谷歌翻译
We study the classical Network Revenue Management (NRM) problem with accept/reject decisions and $T$ IID arrivals. We consider a distributional form where each arrival must fall under a finite number of possible categories, each with a deterministic resource consumption vector, but a random value distributed continuously over an interval. We develop an online algorithm that achieves $O(\log^2 T)$ regret under this model, with no further assumptions. We develop another online algorithm that achieves an improved $O(\log T)$ regret, with only a second-order growth assumption. To our knowledge, these are the first results achieving logarithmic-level regret in a continuous-distribution NRM model without further "non-degeneracy" assumptions. Our results are achieved via new techniques including: a new method of bounding myopic regret, a "semi-fluid" relaxation of the offline allocation, and an improved bound on the "dual convergence".
translated by 谷歌翻译
从几个培训示例中不断学习新课程,而不忘记以前的旧课程需要一个灵活的体系结构,而不可避免地会增加部分存储,其中可以逐步存储并有效地检索新的示例和类。一个可行的架构解决方案是将固定的深神经网络紧密融合到动态发展的明确记忆(EM)。作为该体系结构的核心,我们提出了一个EM单元,该单元在持续学习操作过程中利用节能中的内存计算(IMC)核心。我们首次证明了EM单元如何使用基于IMC Core上的操作(PCM)上的IMC核心操作,在推理期间进行了多个训练示例,扩展以适应看不见的类并进行相似性搜索。具体而言,通过PCM设备的原位进行性结晶实现了一些编码训练示例的物理叠加。与不断学习的最新完整精确基线软件模型相比,IMC核心上达到的分类精度在1.28% - 2.5%范围内保持在2.5%之内。在60个旧课程的顶部,新颖的课程(每班只有五个示例)。
translated by 谷歌翻译